Abstract

Entanglement transmission is utilized widely in quantum communication. In this paper we establish a model, which characterizes the performance of entanglement state passing through the composite free space channel. This free space channel is compounded with atmosphere, sea surface and underwater channel. Based on the model, the entanglement photon pairs transmitted through composite channel are simulated. Simulation results show that the beam wandering, the incident angle of the beam on the sea surface, the concentration of chlorophyll in the seawater and other factors will lead to the degradation of the entanglement and these factors have a nonlinear relationship with transmittance. Moreover, the increase of the chlorophyll concentration is found to be a relatively heavy impact on the entanglement. In addition, expanding the aperture size of the receiving telescope will improve entanglement. The research of this paper has momentous meaning to the transmission of quantum entanglement in free space. What’s more, the results have an extremely vital reference value for quantum communications in diverse natural environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.