Abstract

Recently, an implementation of a universal set of one- and two-quantum-bit gates for quantum computation using spin states of coupled single-electron quantum dots was proposed. It was demonstrated that it is possible to execute a coherent control of a quantum system based on two-electron spin states in a double quantum dot, allowing state preparation, coherent manipulation, and projective readout. This possibility is based on rapid electrical control of the spin exchange interaction. These results motivated us to develop a formal theoretical study of the corresponding model of two coupled spins placed in a magnetic field and subjected to a time-dependent mutual Heisenberg interaction. Using possible exact solutions of the corresponding quantum problem, we study entangling of different separable initial states in this model. It is demonstrated that the entanglement due to a time-dependent Heisenberg interaction is dominating in comparison with the entanglement due to the action of an external magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.