Abstract

We show that it is possible to generate entanglement between two distant Bose-Einstein condensates by detection of Hanbury Brown-Twiss type correlations in photons Bragg-scattered by the condensates. Upon coincident detection of two photons by two detectors, the projected joint state of two condensates is shown to be non-Gaussian. We verify the existence of entanglement by showing that the partially transposed state is negative. Further we use the inequality in terms of higher order moments to confirm entanglement. Our proposed scheme can be generalized for multiple condensates and also for spinor condensates with Bragg scattering of polarized light with the latter capable of producing hyper entanglement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.