Abstract

Quantum network has significant applications both practically and fundamentally. A hybrid architecture with photons and stationary nodes is highly promising. So far, experimental realizations are limited to two nodes with two photons. Going beyond state of the art by entangling many photons with many quantum nodes is highly appreciated. Here, we report an experiment realizing hybrid entanglement between three photons and three atomic-ensemble quantum memories. We make use of three similar setups, in each of which one pair of photon-memory entanglement with high overall efficiency is created via cavity enhancement. Through three-photon interference, the three quantum memories get entangled with the three photons. Via measuring the photons and applying feedforward, we heraldedly entangle the three memories. Our work demonstrates the largest size of hybrid memory-photon entanglement, which may be employed as a build block to construct larger and complex quantum network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call