Abstract

Quantum entanglement is a kernel of quantum computation and quantum communication. We introduce a theoretical scheme to achieve the entanglement between two separated quantum nodes in a hybrid system. The proposed hybrid system based on diamond nitrogen-vacancy (NV) center spin ensemble is coherently coupled to a superconducting quantum circuit consisting of two quantum nodes and a quantum channel. Each node in our setup is composed of an NV center spin ensemble magnetically coupled to a superconducting coplanar resonator. The NV center spin ensemble composed of N identical and non-interacting NV spins, is placed in the magnetic field antinode of the superconducting coplanar resonator where the coupling is maximized. An array of superconducting quantum interference devices (SQUIDs) is inserted in the central conductor of resonator to make its frequency tunable with the magnetic flux threading through the SQUID loops. This flux is generated by passing current through an on-chip wire, so that the resonator can be brought in resonance with the NV center spins without changing their Zeeman splitting. Quantum qubits encoded into two separate nodes are connected by a vacuum superconducting coplanar resonator that is used as a quantum channel. This setup can potentially take the best elements of each individual system:NV center spin ensemble with longer coherence time capable of preparing, storing and releasing photonic quantum information, and the superconducting quantum circuits are easy to manipulate externally and can perform quantum logic gates to control quantum information rapidly. In order to realize the entanglement between two separated quantum nodes, firstly, we make a canonical transformation and obtain the Hamiltonian of the system that is reduced to two NV center spin ensembles resonantly coupled to a single mode of the superconducting coplanar resonator. Then we put forward the hybrid NV center spin-photon qubit encoding. In this hybrid encoding, the NV center spin and photon degrees of freedom enter on an equal footing into the definition of the qubit, in which case, quantum channel will switch on when three superconducting coplanar resonators are in resonance with each other, and all the manipulations can perform simply by tuning the frequencies of the superconducting coplanar resonators. Under the precise control of the evolution time, high fidelity entanglement between two separated quantum nodes is achieved. We show that this proposal can provide high fidelity quantum entanglement under realistic conditions, both in the resonant and the dispersive interaction cases. This hybrid quantum system will exhibit long coherence time and possess features like easy fabrication, integratability, and potential scalability. Furthermore, the quantum node composed of an NV center spin ensemble magnetically coupled to a superconducting coplanar resonator can be respectively integrated, which has practical applications in the realization of quantum information transmission and quantum entanglement among multiple quantum nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call