Abstract

The preprocessing stage of Shor's algorithm generates a class of quantum states referred to as periodic states, on which the quantum Fourier transform is applied. Such states also play an important role in other quantum algorithms that rely on the quantum Fourier transform. Since entanglement is believed to be a necessary resource for quantum computational speedup, we analyze the entanglement of periodic states and the way it is affected by the quantum Fourier transform. To this end, we derive a formula that evaluates the Groverian entanglement measure for periodic states. Using this formula, we explain the surprising result that the Groverian entanglement of the periodic states built up during the preprocessing stage is only slightly affected by the quantum Fourier transform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call