Abstract

We theoretically study unique properties of nuclear spins in quantum dots: an entanglement derived by the spin flip of electrons through hyperfine interaction. The correlation among nuclear spins develops gradually in the presence of the electric current accompanied by the spin flip. This situation is relevant to a leakage current in spin-blocked regions where electrons cannot be transported unless their spins are flipped. The correlated state of nuclear spins drastically enhances the spin-flip rate of electrons and hence the leakage current. By numerical calculations, we show that the enhancement of the current is observable when the residence time of electrons in the quantum dots is shorter than the dephasing time T 2 ∗ of nuclear spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.