Abstract

This paper concerns itself with the entanglement of the high-temperature oxidation chemistry of n-heptane and iso-butanol in flames fueled by their mixtures. While in many cases the chemistries of the individual fuel components do not interact in mixture flames, in this work, we revealed interactions between the individual species pools originating from n-heptane and iso-butanol oxidation. In a coordinated experimental and modeling effort, chemical structures of three low-pressure premixed flames fueled by different blends of n-heptane and iso-butanol were determined using flame-sampling molecular-beam mass spectrometry with synchrotron-based single-photon ionization and chemical kinetic modeling. The chemical kinetic model, which is based on the reaction set that was used previously [Braun-Unkhoff et al., Proc. Combust. Inst.,2017, 36, 1311–1319], was now extended by an n-heptane sub-mechanism. The overall good performance of the model allows for an extraction of chemically relevant information that highlights the entanglement between the individual fuel-specific species pools. For example, it was shown that methyl radicals, in part from iso-butanol oxidation (i.e., from the decomposition of α-iso-butanol radicals) can participate in n-heptane consumption processes through H-abstraction reactions. Further interactions are related to the formation of the methylallyl radical and aromatics formation. The relevance of such interactions is also discussed regarding the formation of oxygenated byproducts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call