Abstract

We demonstrate that entanglement of two macroscopic nanoelectromechanical resonators---coupled to each other via a common detector, a tunnel junction---can be generated by running a current through the device. We introduce a setup that overcomes generic limitations of proposals suggesting to entangle systems via a shared bath. At the heart of the proposal is an Andreev entangler setup, representing an experimentally feasible way of entangling two nanomechanical oscillators. Instead of relying on the coherence of a (fermionic) bath, in the Andreev entangler setup, a split Cooper pair that coherently tunnels to each oscillator mediates their coupling and thereby induces entanglement between them. Since entanglement is in each instance generated by Markovian and non-Markovian noisy open system dynamics in an out-of-equilibrium situation, we argue that the present scheme also opens up perspectives to observe dissipation-driven entanglement in a condensed-matter system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.