Abstract

We study the entanglement of multiqubit fermionic pseudo-Hermitian coherent states (FPHCSs) described by anticommutative Grassmann numbers. We introduce pseudo-Hermitian versions of well-known maximally entangled pure states, such as Bell, GHZ, Werner, and biseparable states, by integrating over the tensor products of FPHCSs with a suitable choice of Grassmannian weight functions. As an illustration, we apply the proposed method to the tensor product of two- and three-qubit pseudo-Hermitian systems. For a quantitative characteristic of entanglement of such states, we use a measure of entanglement determined by the corresponding concurrence function and average entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.