Abstract

Free Fermions on vertices of distance-regular graphs are considered. Bipartitions are defined by taking as one part all vertices at a given distance from a reference vertex. The ground state is constructed by filling all states below a certain energy. Borrowing concepts from time and band limiting problems, algebraic Heun operators and Terwilliger algebras, it is shown how to obtain, quite generally, a block tridiagonal matrix that commutes with the entanglement Hamiltonian. The case of the Hadamard graphs is studied in detail within that framework and the existence of the commuting matrix is shown to allow for an analytic diagonalization of the restricted two-point correlation matrix and hence for an explicit determination of the entanglement entropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.