Abstract

We investigate, in a general form, entanglement of biphoton qutrits and ququarts, i.e. states formed in the processes of, correspondingly, degenerate and non-degenerate spontaneous parametric down-conversion. Indistinguishability of photons and, for ququarts, joint presence of the frequency and polarization entanglement are fully taken into account. In the case of qutrits, the most general three-parametric families of maximally entangled and non-entangled states are found, and anticorrelation of the degree of entanglement and polarization is shown to occur and to be characterized by a rather simple formula. Biphoton ququarts are shown to be two-qudits with the single-photon Hilbert space dimensionality d=4, which differentiates them significantly from the often used two-qubit model (d=2). New expressions for entanglement quantifiers of biphoton ququarts are derived and discussed. Rather simple procedures for a direct measurement of the degree of entanglement are described for both qutrits and ququarts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.