Abstract

We study quantum information aspects of the fermionic entanglement negativity recently introduced in [Phys. Rev. B 95, 165101 (2017)] based on the fermionic partial transpose. In particular, we show that it is an entanglement monotone under the action of local quantum operations and classical communications--which preserves the local fermion-number parity-- and satisfies other common properties expected for an entanglement measure of mixed states. We present fermionic analogs of tripartite entangled states such as W and Greenberger-Horne-Zeilinger states and compare the results of bosonic and fermionic partial transpose in various fermionic states, where we explain why the bosonic partial transpose fails in distinguishing separable states of fermions. Finally, we explore a set of entanglement quantities which distinguish different classes of entangled states of a system with two and three fermionic modes. In doing so, we prove that vanishing entanglement negativity is a necessary and sufficient condition for separability of $N\geq 2$ fermionic modes with respect to the bipartition into one mode and the rest. We further conjecture that the entanglement negativity of inseparable states which mix local fermion-number parity is always non-vanishing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.