Abstract
In this paper, we calculate the entanglement negativity in free-fermion systems by use of the overlap matrices. For a tripartite system, if the ground state can be factored into triples of modes, we show that the partially transposed reduced density matrix can be factorized and the entanglement negativity has a simple form. However, the factorability of the ground state in a tripartite system does not hold in general. In this situation, the partially transposed reduced density matrix can be expressed in terms of the Kronecker product of matrices. We explicitly compute the entanglement negativity for the Su-Schrieffer-Heeger model, the integer Quantum Hall state, and a homogeneous one-dimensional chain. We find that the entanglement negativity for the integer quantum Hall states shows an area law behavior. For the entanglement negativity of two adjacent intervals in a homogeneous one-dimensional gas, we find agreement with the conformal field theory. Our method provides a numerically feasible way to study the entanglement negativity in free-fermion systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.