Abstract

We present a path integral formalism for expressing matrix elements of the density matrix of a quantum many-body system between any two coherent states in terms of standard Matsubara action with periodic(anti-periodic) boundary conditions on bosonic(fermionic) fields. We show that this enables us to express several entanglement measures for bosonic/fermionic many-body systems described by a Gaussian action in terms of the Matsubara Green function. We apply this formalism to compute various entanglement measures for the two-dimensional Bose-Hubbard model in the strong-coupling regime, both in the presence and absence of Abelian and non-Abelian synthetic gauge fields, within a strong coupling mean-field theory. In addition, our method provides an alternative formalism for addressing time evolution of quantum-many body systems, with Gaussian actions, driven out of equilibrium without the use of Keldysh technique. We demonstrate this by deriving analytical expressions of the return probability and the counting statistics of several operators for a class of integrable models represented by free Dirac fermions subjected to a periodic drive in terms of the elements of their Floquet Hamiltonians. We provide a detailed comparison of our method with the earlier, related, techniques used for similar computations, discuss the significance of our results, and chart out other systems where our formalism can be used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.