Abstract
In this paper, we first present a simple measure for multiqubit entanglement based on the strategy of bipartite cuts and the measure of negativity. Then, we establish generalized monogamy inequalities and associated partition-dependent residual entanglement (PRE) accounting for arbitrary partitions of a multiqubit system. By virtue of the defined quantities, we investigate the entanglement dynamics of a system of N qubits, either in the Greenberger–Horne–Zeilinger (GHZ)-type state or in the W state, interacting with N independent reservoirs in both Markovian and non-Markovian regimes. We observe entanglement revivals of qubits at instantaneous points of disappearance or after a finite interval of abrupt vanishing due to the memory effect of non-Markovian reservoirs. We also follow the whole entanglement evolution in terms of the PRE to demonstrate the process of transition between the bipartite entanglement of all possible bipartitions and the multipartite entanglement. In particular, we show that the change in time of entanglement formats differs qualitatively for the GHZ-type and W states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.