Abstract
Quantum entanglement between an interfering particle and a detector for acquiring the which-path information plays a central role for enforcing Bohr’s complementarity principle. However, the quantitative relation between this entanglement and the fringe visibility remains untouched upon for an initial mixed state. Here we find an equality for quantifying this relation. Our equality characterizes how well the interference pattern can be preserved when an interfering particle, initially carrying a definite amount of coherence, is entangled, to a certain degree, with a which-path detector. This equality provides a connection between entanglement and interference in the unified framework of coherence, revealing the quantitative entanglement-interference complementarity. We experimentally demonstrate this relation with a superconducting circuit, where a resonator serves as a which-path detector for an interfering qubit. The measured fringe visibility of the qubit’s Ramsey signal and the qubit-resonator entanglement exhibit a complementary relation, in well agreement with the theoretical prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: npj Quantum Information
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.