Abstract
We investigate the entanglement properties of resonating valence bond (RVB) states on a two-dimensional lattice in the presence of dopants that remove electrons from the lattice creating holes. The movement of the holes generated by the Hubbard Hamiltonian in the regime of strong Coulomb repulsion in this setting could be responsible for the phenomenon of high-temperature superconductivity as hypothesized by [Anderson Science 235, 1196 (1987)]. We argue that there is a particular density of dopants (holes) where the entanglement contained in the lattice attains its maximal value for the nearest-neighbor RVB liquid state. This result implies that many-body entanglement may be related to quantum phase transitions that are modeled by RVB theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.