Abstract

We review recent results regarding entanglement in quantum fields in cosmological spacetimes and related phenomena in flat spacetime such as the Unruh effect. We begin with a summary of important results about field entanglement and the mathematics of Bogoliubov transformations that is very often used to describe it. We then discuss the Unruh–DeWitt detector model, which is a useful model of a generic local particle detector. This detector model has been successfully used as a tool to obtain many important results. In this context we discuss two specific types of these detectors: a qubit and a harmonic oscillator. The latter has recently been shown to have important applications when one wants to probe nonperturbative physics of detectors interacting with quantum fields. We then detail several recent advances in the study and application of these ideas, including echoes of the early universe, entanglement harvesting, and a nascent proposal for quantum seismology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.