Abstract

We provide a proof for the necessity of quantizing fundamental interactions demonstrating that a quantum version is needed for any non trivial conservative interaction whose strength depends on the relative distance between two objects. Our proof is based on a consistency argument that in the presence of a classical field two interacting objects in a separable state could not develop entanglement. This requirement can be cast in the form of a holonomic constraint that cannot be satisfied by generic interparticle potentials. Extending this picture of local holonomic constraints, we design a protocol that allows to measure the terms of a multipole expansion of the interaction of two composite bodies. The results presented in this work can pave the way for a study of fundamental interactions based on the analysis of entanglement properties.

Highlights

  • More than a century after its birth, quantum mechanics is considered one of the physical theories that received the greatest experimental confirmation

  • We provide a general result that proves that any conservative interaction must have a quantized version, under the hypothesis that the effective interparticle potential depends on the relative distance between two objects but not on the derivative of any order of such a distance with respect to time

  • In this work we proved that every non-trivial conservative potential will generate entanglement between two physical objects

Read more

Summary

Introduction

More than a century after its birth, quantum mechanics is considered one of the physical theories that received the greatest experimental confirmation. We provide a general result that proves that any conservative interaction must have a quantized version, under the hypothesis that the effective interparticle potential depends on the relative distance between two objects but not on the derivative of any order of such a distance with respect to time. Starting from this assumption we show that the request that it does not create entanglement is equivalent to impose a holonomic constraint that cannot be satisfied for a generic setup. More general implementations of potentials depending on the internal states will be considered below

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.