Abstract

We present a general, analytic recipe to compute the entanglement that is generated between arbitrary, discrete modes of bosonic quantum fields by Bogoliubov transformations. Our setup allows the complete characterization of the quantum correlations in all Gaussian field states. Additionally, it holds for all Bogoliubov transformations. These are commonly applied in quantum optics for the description of squeezing operations, relate the mode decompositions of observers in different regions of curved spacetimes, and describe observers moving along non-stationary trajectories. We focus on a quantum optical example in a cavity quantum electrodynamics setting: an uncharged scalar field within a cavity provides a model for an optical resonator, in which entanglement is created by non-uniform acceleration. We show that the amount of generated entanglement can be magnified by initial single-mode squeezing, for which we provide an explicit formula. Applications to quantum fields in curved spacetimes, such as an expanding universe, are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.