Abstract
We propose an experimental scheme of generating entangled states between two spinor Bose-Einstein condensates (BECs) using Rydberg excitations. Due to the strong interaction between Rydberg atoms, the Rydberg excitation creates an interaction between two closely located BECs. The method is suitable particularly for atom chip and permanent magnetic trap systems, which can create many BECs with an arbitrary two-dimensional geometry. We show two schemes of entangled state generation, based on stimulated Raman adiabatic passage (STIRAP) methods. The first method produces a symmetric state with total ${S}^{x}$ spin zero between ground and excited states of the atoms using a single STIRAP pair, while the second produces a NOON state between hyperfine ground states using two STIRAP pairs. We show that despite the additional complexity of the BECs, it is possible to identify the initial and final adiabatic states exactly. We verify our theoretical predictions using numerical simulations on small boson number systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.