Abstract
We derive an analytical density functional for the single-site entanglement of the one-dimensional homogeneous Hubbard model, by means of an approximation to the linear entropy. We show that this very simple density functional reproduces quantitatively the exact results. We then use this functional as input for a local density approximation to the single-site entanglement of inhomogeneous systems. We illustrate the power of this approach in a harmonically confined system, which could simulate recent experiments with ultracold atoms in optical lattices as well as in a superlattice and in an impurity system. The impressive quantitative agreement with numerical calculations -- which includes reproducing subtle signatures of the particle density stages -- shows that our density-functional can provide entanglement calculations for actual experiments via density measurements. Next we use our functional to calculate the entanglement in disordered systems. We find that, at contrast with the expectation that disorder destroys the entanglement, there exist regimes for which the entanglement remains almost unaffected by the presence of disordered impurities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.