Abstract

Restricted Boltzmann machines (RBMs) are a class of neural networks that have been successfully employed as a variational ansatz for quantum many-body wave functions. Here, we develop an analytic method to study quantum many-body spin states encoded by random RBMs with independent and identically distributed complex Gaussian weights. By mapping the computation of ensemble-averaged quantities to statistical mechanics models, we are able to investigate the parameter space of the RBM ensemble in the thermodynamic limit. We discover qualitatively distinct wave functions by varying RBM parameters, which correspond to distinct phases in the equivalent statistical mechanics model. Notably, there is a regime in which the typical RBM states have near-maximal entanglement entropy in the thermodynamic limit, similar to that of Haar-random states. However, these states generically exhibit nonergodic behavior in the Ising basis, and do not form quantum state designs, making them distinguishable from Haar-random states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.