Abstract

In the last years, a relationship has been established between the quantum Fisher information (QFI) and quantum entanglement. In the case of two-qubit systems, all pure entangled states can be made useful for sub-shot-noise interferometry while their QFI meets a necessary and sufficient condition (Hyllus et al., 2010). In M-qubit systems, the QFI provides just a sufficient condition in the task of detecting the degree of entanglement of a generic state (Pezzé and Smerzi, 2009). In our work, we show analytically that, for a large class of one-parameter non-optimal two-qubit states, the maximally entangled states are associated with stationary points of the QFI, as a function of such parameter. We show, via numerical simulations, that this scenario is maintained for the generalisation of this class of states to a generic M-qubit system. Furthermore, we suggest a scheme for an interferometer able to detect the entanglement in a large class of two-spin states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.