Abstract

Deep inelastic scattering (DIS) samples a part of the wave function of a hadron in the vicinity of the light cone. Lipatov constructed a spin chain which describes the amplitude of DIS in leading logarithmic approximation. Kharzeev and Levin proposed the entanglement entropy as an observable in DIS [Phys. Rev. D 95, 114008 (2017)], and suggested a relation between the entanglement entropy and parton distributions. Here we represent the DIS process as a local quench in the Lipatov's spin chain, and study the time evolution of the produced entanglement entropy. We show that the resulting entanglement entropy depends on time logarithmically, $\mathcal S(t)=1/3 \ln{(t/\tau)}$ with $\tau = 1/m$ for $1/m \le t\le (mx)^{-1}$, where $m$ is the proton mass and $x$ is the Bjorken $x$. The central charge $c$ of Lipatov's spin chain is determined here to be $c=1$; using the proposed relation between the entanglement entropy and parton distributions, this corresponds to the gluon structure function growing at small $x$ as $xG(x) \sim 1/x^{1/3}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.