Abstract

We reconsider the computation of the entanglement entropy of two disjoint intervals in a (1+1) dimensional conformal field theory by conformal block expansion of the 4-point correlation function of twist fields. We show that accurate results may be obtained by taking into account several terms in the operator product expansion of twist fields and by iterating the Zamolodchikov recursion formula for each conformal block. We perform a detailed analysis for the Ising conformal field theory and for the free compactified boson. Each term in the conformal block expansion can be easily analytically continued and so this approach also provides a good approximation for the von Neumann entropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.