Abstract

Generally speaking, entanglement entropy (EE) between two subregions of a gapped quantum many-body state is proportional to the area/length of their interface due to the short-range quantum correlation. However, the so-called area law is violated logarithmically in a quantum critical phase. Moreover, the subleading correction exists in long-range entangled topological phases. It is referred to as topological EE which is related to the quantum dimension of the collective excitation in the bulk. Furthermore, if a non-smooth sharp angle is in the presence of the subsystem boundary, a universal angle dependent geometric contribution is expected to appear in the subleading correction. In this work, we simultaneously explore the geometric and edge contributions in the integer quantum Hall (IQH) state and its edge reconstruction in a unified bipartite method. Their scaling is found to be consistent with conformal field theory (CFT) predictions and recent results of particle number fluctuation calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call