Abstract

The so-called "non-Fermi liquid" behavior is very common in strongly correlated systems. However, its operational definition in terms of "what it is not" is a major obstacle for the theoretical understanding of this fascinating correlated state. Recently there has been much interest in entanglement entropy as a theoretical tool to study non-Fermi liquids. So far explicit calculations have been limited to models without direct experimental realizations. Here we focus on a two-dimensional electron fluid under magnetic field and filling fraction ν=1/2, which is believed to be a non-Fermi liquid state. Using a composite fermion wave function which captures the ν=1/2 state very accurately, we compute the second Rényi entropy using the variational MonteCarlo technique. We find the entanglement entropy scales as LlogL with the length of the boundary L as it does for free fermions, but has a prefactor twice that of free fermions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.