Abstract

We study the behavior of the entanglement entropy in $(2+1)$--dimensional strongly coupled theories via the AdS/CFT correspondence. We consider theories at a finite charge density with a magnetic field, with their holographic dual being Einstein-Maxwell-Dilaton theory in four dimensional anti--de Sitter gravity. Restricting to black hole and electron star solutions at zero temperature in the presence of a background magnetic field, we compute their holographic entanglement entropy using the Ryu-Takayanagi prescription for both strip and disk geometries. In the case of the electric or magnetic zero temperature black holes, we are able to confirm that the entanglement entropy is invariant under electric-magnetic duality. In the case of the electron star with a finite magnetic field, for the strip geometry, we find a discontinuity in the first derivative of the entanglement entropy as the strip width is increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call