Abstract

We observe that the entanglement entropy resulting from tracing over a subregion of an initially pure state can grow faster than the surface area of the subregion (indeed, proportional to the volume), in contrast to examples studied previously. The pure states with this property have long-range correlations between interior and exterior modes and are constructed by purification of the desired density matrix. We show that imposing a no-gravitational collapse condition on the pure state is sufficient to exclude faster than area law entropy scaling. This observation leads to an interpretation of holography as an upper bound on the realizable entropy (entanglement or von Neumann) of a region, rather than on the dimension of its Hilbert space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.