Abstract

We demonstrate a new technique for detecting the amplitude of arbitrarily chosen components of radio-frequency waveforms based on stroboscopic backaction evading measurements. We combine quantum nondemolition measurements and stroboscopic probing to detect waveform components with magnetic sensitivity beyond the standard quantum limit. Using an ensemble of 1.5×10^{6} cold rubidium atoms, we demonstrate entanglement-enhanced sensing of sinusoidal and linearly chirped waveforms, with 1.0(2) and 0.8(3)dB metrologically relevant noise reduction, respectively. We achieve volume-adjusted sensitivity of δBsqrt[V]≈3.96 fTsqrt[cm^{3}/Hz], comparable to the best rf magnetometers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.