Abstract

In the present paper, the quantum entanglement dynamics of two qubits Heisenberg-XYZ spin chain under a time dependent magnetic field effects, and considering the Dzyaloshinskii-Moriya (DM) interactions is studied. Assuming the system as being influenced by a non-Markovian environment, the dynamics of entanglement through the concurrence is studied. It follows from the simulations that the time dependency character of the DM coupling, the external magnetic field, and the Heisenberg spin-spin coupling preserves longer entanglement in the system compared to the case with these parameters constant. Moreover, it also follows that the effects of the environment on the system induces the loss of entanglement and then, the time interval of entanglement sudden death highly depends on the initial state considered. It is also observed that by tuning the strength of the DM coupling associated with a time varying magnetic field and a time varying spin-spin anisotropic coupling, the system can be better protected from unwanted effects of the environment and thus, entanglement can be preserved for a longer period of time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call