Abstract

We investigate entanglement dynamics and transfer in a system of two identical independent qubits, each of them locally interacting with a bosonic reservoir. Starting from two-qubit extended Werner-like states, we have shown that the degree of entanglement of the initial states, Markovian environments and the purity can control the time of the two-qubit entanglement sudden death and the reservoirs’ entanglement sudden birth. Moreover, the phenomenon of entanglement sudden death/birth may occur depending on the values of parameters like purity or degree of entanglement of the initial state. When initial states are not pure, entanglement sudden death/birth always occurs, this will permit us to link the occurrence time of entanglement sudden death/birth and entanglement transfer to the purity or the degree of entanglement of the initial states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.