Abstract
We study the task of distilling entanglement by a coherent superposition operation $t\hat{a}+r\hat{a}^\dagger$ applied to a continuous-variable state under a thermal noise. In particular, we compare the performances of two different strategies, i.e., the non-Gaussian operation $t\hat{a}+r\hat{a}^\dagger$ is applied before or after the noisy Gaussian channel. This is closely related to a fundamental problem of whether Gaussian or non-Gaussian entanglement can be more robust under a noisy channel and also provides a useful insight into the practical implementation of entanglement distribution for a long-distance quantum communication. We specifically look into two entanglement characteristics, the logarithmic negativity as a measure of entanglement and the teleportation fidelity as a usefulness of entanglement, for each distilled state. We find that the non-Gaussian operation after (before) the thermal noise becomes more effective in the low (high) temperature regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.