Abstract
The quantum properties of a non-degenerate three-level laser with the parametric amplifier and coupled to a thermal reservoir are thoroughly analyzed with the use of the pertinent master equation and stochastic differential equations associated with the normal ordering. Applying solutions of resulting differential equations, quadrature variance, the mean and variance of photon number, the photon number correlation are calculated. However, the two-mode driving light has no effect on the squeezing properties of the cavity modes. Employing the same solutions, one can also obtain anti normally ordered characteristic function defined in the Heisenberg picture. For a linear gain coefficient of (A = 100), for a cavity damping constant of K= 0:8, μ = 0.16 and for thermal reservoir nth = 0, the maximum intra cavity photon entanglement is found at steady state and at threshold to be 70%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.