Abstract

We propose a novel entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled W state, resorting to an ancillary single electron and controlled-not gates. Compared with other ECPs for W states, our ECP has some illustrious advantages. First, each N-electron entangled system can be used to complete the entanglement concentration with only an ancillary electron. It does not require that there are two copies of N-electron entangled systems in each round of entanglement concentration. Second, only one of the users, say Charlie, needs to perform the protocol, while all parties should perform the same operations as Charlie in other ECPs for W-class states. Third, only Charlie asks other parities to retain or discard their electrons, and they do not need to check their measurement results, which greatly simplifies the complication of classical communication. Fourth, our ECP has a higher success probability than other ECPs for W-class states as its success probability equals to the limit value of an ECP for a W state in theory. These advantages maybe make our ECP more useful in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.