Abstract

AbstractIn this paper we are concerned with questions about the knottedness of a closed curve of given length embedded in Z3. What is the probability that such a randomly chosen embedding is knotted? What is the probability that the embedding contains a particular knot? What is the expected complexity of the knot? To what extent can these questions also be answered for a graph of a given homeomorphism type?We use a pattern theorem due to Kesten 12 to prove that almost all embeddings in Z3 of a sufficiently long closed curve contain any given knot. We introduce the idea of a good measure of knot complexity. This is a function F which maps the set of equivalence classes of embeddings into 0, ). The F measure of the unknot is zero, and, generally speaking, the more complex the prime knot decomposition of a given knot type, the greater its F measure. We prove that the average value of F diverges to infinity as the length (n) of the embedding goes to infinity, at least linearly in n. One example of a good measure of knot complexity is crossing number.Finally we consider similar questions for embeddings of graphs. We show that for a fixed homeomorphism type, as the number of edges n goes to infinity, almost all embeddings are knotted if the homeomorphism type does not contain a cut edge. We prove a weaker result in the case that the homeomorphism type contains at least one cut edge and at least one cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call