Abstract

We use the replica method to compute the entanglement entropy of a universe without gravity entangled in a thermofield-double-like state with a disjoint gravitating universe. Including wormholes between replicas of the latter gives an entropy functional which includes an “island” on the gravitating universe. We solve the back-reaction equations when the cosmological constant is negative to show that this island coincides with a causal shadow region that is created by the entanglement in the gravitating geometry. At high entanglement temperatures, the island contribution to the entropy functional leads to a bound on entanglement entropy, analogous to the Page behavior of evaporating black holes. We demonstrate that the entanglement wedge of the non-gravitating universe grows with the entanglement temperature until, eventually, the gravitating universe can be entirely reconstructed from the non-gravitating one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.