Abstract

Entanglement has been known to boost target detection, despite it being destroyed by lossy-noisy propagation. Recently, Zhuang and Shapiro (2022 Phys. Rev. Lett. 128 010501) proposed a quantum pulse-compression radar to extend entanglement’s benefit to target range estimation. In a radar application, many other aspects of the target are of interest, including angle, velocity and cross section. In this study, we propose a dual-receiver radar scheme that employs a high time-bandwidth product microwave pulse entangled with a pre-shared reference signal available at the receiver, to investigate the direction of a distant object and show that the direction-resolving capability is significantly improved by entanglement, compared to its classical counterpart under the same parameter settings. We identify the applicable scenario of this quantum radar to be short-range and high-frequency, which enables entanglement’s benefit in a reasonable integration time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call