Abstract

In this paper we study various aspects of entanglement entropy in strongly- coupled de Sitter quantum field theories in various dimensions. We focus on gravity solutions that are dual to field theories in a fixed de Sitter background, both in equilibrium and out-of-equilibrium configurations. The latter corresponds to the Vaidya generalization of the AdS black hole solutions with hyperbolic topology. We compute analytically the entanglement entropy of spherical regions and show that there is a transition when the sphere is as big as the horizon. We also explore thermalization in time-dependent situations in which the system evolves from a non-equilibrium state to the Bunch-Davies state. We find that the saturation time is equal to the light-crossing time of the sphere. This behavior is faster than random walk and suggests the existence of free light-like degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.