Abstract

Considering the interaction between two-mode SU(1,1) coherence states and a two-level atom, we find an exact solution of the Milburn equation for the system. We investigate the time evolution of the entanglement of field-atom and one of two modes of field using the quantum-reduced entropy and quantum relative entropy, respectively. The influences of intrinsic decoherence and two-mode photon number difference on the evolution of the entanglement of field-atom and one of two modes of field are discussed. It is shown that the entanglement of field-atom reduces to a stationary value with time evolution and the entanglement between two modes increases to another stationary value with intrinsic decoherence, and the values only depend on the two-mode photon number and mean photon number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.