Abstract

We study the entanglement entropy resulting from tracing out local degrees of freedom of a quantum scalar field in an expanding universe. It is known that when field modes become superhorizon during inflation they evolve to increasingly squeezed states. We argue that this causes the entanglement entropy to grow continuously as successive modes cross the horizon. The resulting entropy is proportional to the total duration of inflation. It is preserved during a subsequent radiation or matter dominated era, and thus it may be relevant for today’s universe. We demonstrate explicitly these features in a toy model of a scalar field in 1+1 dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call