Abstract

We study the entanglement entropy resulting from tracing out local degrees of freedom of a quantum scalar field in an expanding universe. It is known that when field modes become superhorizon during inflation they evolve to increasingly squeezed states. We argue that this causes the entanglement entropy to grow continuously as successive modes cross the horizon. The resulting entropy is proportional to the total duration of inflation. It is preserved during a subsequent radiation or matter dominated era, and thus it may be relevant for today’s universe. We demonstrate explicitly these features in a toy model of a scalar field in 1+1 dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.