Abstract

The entanglement in many-electron states is investigated using a global entanglement measure, viz. average site mixedness. We have examined metallic states of noninteracting electrons, Nagaoka and Gutzwiller states of strongly-correlated electrons, and superconducting states. Uncorrelated metallic states at half filling seem to maximize entanglement, as these states optimize the number of holes, the number of doubly-occupied sites. Entanglement is calculated explicitly for Gutzwiller-projected many-electron states in one dimension, which have less entanglement as double occupancy is inhibited in these states. Entanglement in superconducting states, which tend to promote double occupancy, is calculated as a function of the energy gap, and found to be lower than the metallic state entanglement. There is a possibility of a regime with a nonzero single-site concurrence depending on the energy gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.