Abstract

We develop a transfer operator approach for the calculation of Rényi entanglement entropies in arbitrary (i.e. Abelian and non-Abelian) pure lattice gauge theory projected entangled pair states in 2+1 dimensions. It is explicitly shown how the long-range behavior of these quantities gives rise to an entanglement area law in both the thermodynamic limit and in the continuum. We numerically demonstrate the applicability of our method to the ℤ2 lattice gauge theory and relate some entanglement properties to the confinement-deconfinement transition therein. We provide evidence that Rényi entanglement entropies in certain cases do not provide a complete probe of (de)confinement properties compared to Wilson loop expectation values as other genuine (nonlocal) observables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.