Abstract

We theoretically investigate quantum entanglement and coherence in a hybrid Laguerre–Gaussian rotating cavity optomechanical system with two-level atoms, where cavity and mechanical modes are coupled through the exchange of orbital angular momentum. Our study shows that the injection of atoms with a suitable choice of the physical parameters can significantly improve the degree of optomechanical entanglement in all aspects. In the study of quantum coherence research, we show more comprehensively the negative and positive effects of atoms on the coherence. The result obtained is that only when the atom is significantly off-resonant to driving field, the coupling strength in between the atoms and light field increases and the quantum coherence can be enhanced, otherwise it will reduce quantum coherence. In addition, the atomic decay suppresses quantum coherence phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.