Abstract

We perform a holographic study of the high and low temperature behaviours of logarithmic negativity (LN) and entanglement wedge cross section (EWCS) in a large N strongly coupled thermal field theory with critical point, having a well defined gravity dual known as 1RC black hole. The bulk theory accommodates a dimensionless parameter ξ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi $$\\end{document}, proportional to the charge of the 1RC black hole. Holographically, ξ→2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi \\rightarrow 2$$\\end{document} limit ensures an existence of a critical point in the dual boundary theory. We show that the logarithmic negativity in low and high temperature limits enhances with increasing ξ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi $$\\end{document}. We analytically compute the EWCS in low and high temperature limits and find an agreement with the previously reported numerical results. We holographically explore the correlation between two identical copies of thermal field theory with critical point forming a thermofield double state (TFD) by computing the thermo mutual information (TMI). TMI shows an increasing behaviour with respect to the width of the boundary region. Furthermore, we study the chaotic behaviour of the field theory by analyzing a shock wave in the dual eternal 1 RC black hole and then estimate the degradation of TMI. The rate of such disruption of TMI slows down as the value of critical parameter ξ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi $$\\end{document} takes higher values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.