Abstract

Sub-picosecond coincidence timing from nonlocal intensity interference of entangled photons allows quantum interferometry for plasmas. Using a warm plasma dispersion relation, we correlate phase measurement sensitivity with different plasma properties or physics mechanisms over 6 orders of magnitude. Due to Nα(α ≤ - 1/2) scaling with the photon number N, quantum interferometry using entangled light can probe small signals in plasmas not previously accessible. As an example, it is predicted that plasmas will induce shifts to a Gaussian dip, a well-known quantum optics phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.