Abstract

We investigate the entanglement properties of the two-mode coherent fields interacting with a two-level atom via the two-photon transition. We discuss the quantum entanglement between the two-mode coherent fields and the two-level atom by using the quantum reduced entropy and that between the two-mode coherent fields by using the quantum relative entropy. We also examine the influences of the initial states of the atom and the two-mode coherent fields on the quantum entanglement of the system. Our results show that three types of entangled states can be prepared via the two-mode coherent fields interacting with a two-level atom and choosing appropriately the initial-state parameters of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call