Abstract

In the present paper, an example of entanglement between two different kinds of interacting particles, photons and electrons is analysed. The initial-value problem of the Schrödinger equation is solved non-perturbatively for the system of a free electron interacting with a quantized mode of electromagnetic radiation. Wave packets of the dressed states so obtained are constructed in order to describe the spatio-temporal separation of the subsystems before and after interaction. The joint probability amplitudes are calculated for the detection of the electron at some space–time location and the detection of a definite number of photons. The analytical study of the time evolution of entanglement between the initially separated electron wave packet and the radiation mode leads to the conclusion that in general there are non-vanishing entropy remnants in the subsystems after the interaction. On the basis of the simple model to be presented here, the calculated values of the entropy remnants crucially depend on the character of the assumed switching-on and -off of the interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.